This site uses cookies to measure how you use the website so it can be updated and improved based on your needs and also uses cookies to help remember the notifications you’ve seen, like this one, so that we don’t show them to you again. If you could also tell us a little bit about yourself, this information will help us understand how we can support you better and make this site even easier for you to use and navigate.

MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes

Authors

Zhang, Yu, Tartaglia, Maria Carmela, Schuff, Norbert, Chiang, Gloria C., Ching, Christopher, Rosen, Howard J., Gorno-Tempini, Maria Luisa, Miller, Bruce L., Weiner, Michael W.

Journal

Journal Of Alzheimer's Disease: JAD, Volume: 33, No.: 2, Pages.: 431-444

Year of Publication

2013

Abstract

Brain magnetic resonance imaging (MRI) studies have demonstrated regional patterns of brain macrostructural atrophy and white matter microstructural alterations separately in the three major subtypes of frontotemporal lobar degeneration (FTLD), which includes behavioral variant frontotemporal dementia (bvFTD), semantic dementia (SD), and progressive nonfluent aphasia (PNFA). This study was to investigate to what extent the pattern of white matter microstructural alterations in FTLD subtypes mirrors the pattern of brain atrophy, and to compare the ability of various diffusion tensor imaging (DTI) indices in characterizing FTLD patients, as well as to determine whether DTI measures provide greater classification power for FTLD than measuring brain atrophy. Twenty-five patients with FTLD (13 with bvFTD, 6 with SD, and 6 with PNFA) and 19 healthy age-matched control subjects underwent both structural MRI and DTI scans. Measurements of regional brain atrophy were based on T1-weighted MRI data and voxel-based morphometry. Measurements of regional white matter degradation were based on voxelwise as well as regions-of-interest tests of DTI variations, expressed as fractional anisotropy, axial diffusivity, and radial diffusivity. Compared to controls, bvFTD, SD, and PNFA patients each exhibited characteristic regional patterns of brain atrophy and white matter damage. DTI overall provided significantly greater accuracy for FTLD classification than brain atrophy. Moreover, radial diffusivity was more sensitive in assessing white matter damage in FTLD than other DTI indices. The findings suggest that DTI in general and radial diffusivity in particular are more powerful measures for the classification of FTLD patients from controls than brain atrophy.;

Keywords

aged, atrophy, brain, classification, diffusion, diffusion tensor imaging, female, fltd, frontotemporal lobar degeneration, humans, identification, imaging, leukoencephalopathies, magnetic resonance imaging, male, methods, middle aged, of, pathology, primary progressive nonfluent aphasia, reproducibility of results, set, standards, tensor, using

Countries of Study

USA

Types of Dementia

Fronto Temporal (also known as Pick’s Disease)

Types of Study

Non randomised controlled trial

Type of Outcomes

Other

Type of Interventions

Diagnostic Target Identification

Diagnostic Targets

Neuroimaging (e.g. MRI, PET, CAT etc.)