Dopamine D₂-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients
Year of Publication 2013
Abstract
Dopamine is a neurotransmitter involved in several brain functions ranging from emotions control, movement organization to memory formation. It is also involved in the regulation of mechanisms of synaptic plasticity. However, its role in Alzheimer’s disease (AD) pathogenesis is still puzzling. Several recent line of research instead indicates a clear role for dopamine in both amyloid β formation as well as in cognitive decline progression. In particular it has been shown that dopamine D₂-like receptors (namely D₃ and D₂) could be mostly responsible for dopamine dysfunction in AD. Here we aimed to study the effects of the dopamine agonist Rotigotine on cortical excitability and on central cholinergic transmission in cases of AD. Rotigotine is a dopamine agonist with a pharmacological profile with high affinity for D₃ and D₂ receptors. We used paired pulse protocols assessing short intracortical inhibition (SICI) and intracortical facilitation (ICF) to asses cortical excitability over the primary motor cortex and Short Latency Afferent Inhibition (SLAI) protocols, to verify the effects of the drug on central cholinergic transmission in a group of AD patients compared to age-matched controls. We observed that rotigotine induces unexpected changes in both cortical excitability (increased) and central cholinergic transmission (restored) of AD patients. These unexpected effects might depend on the dopamine D₂-like receptors dysfunction previously described in AD brains. The current findings could indicate that future strategies aimed to ameliorate symptoms of the related AD cognitive decline could also involve some dopaminergic drugs. This article is part of a Special Issue entitled ‘Cognitive Enhancers’.; Copyright © 2012 Elsevier Ltd. All rights reserved.